Prijava na forum:
Ime:
Lozinka:
Prijavi me trajno:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:

ConQUIZtador
Trenutno vreme je: 14. Nov 2024, 18:21:01
nazadnapred
Korisnici koji su trenutno na forumu 0 članova i 1 gost pregledaju ovu temu.
Idi dole
Stranice:
1  Sve
Počni novu temu Nova anketa Odgovor Štampaj Dodaj temu u favorite Pogledajte svoje poruke u temi
Tema: Fraktalna dimenzija  (Pročitano 8900 puta)
Moderator
Svedok stvaranja istorije

Izgledas mi kao lutkica iz Trsta ;)

Zodijak Gemini
Pol Muškarac
Poruke 15222
Zastava Puerto Pollo
OS
Windows 7
Browser
Chrome 17.0.963.79
mob
HTC Wildfire S
volim fraktale .. moja mama ih pravi.. ali nisam znala da neko to zapravo i kupuje..  Smile

Moj drugar je upoznao lika koji živi od toga. (ima često izložbe i prodaje strancima)
Što je najveći fazon, ne samo da se kupuje nego je i cena ponekad neverovatno visoka.

nisam znala stvarno  Smile  daj neki info na pp ako saznas .. sta .. kako .. gde  Smile
Ok, pitaću drugara ovih dana. Smiley

Edit.
Samo da dopunim: relativno "neverovatno visoka", jer... ipak počinjemo od toga da smatramo i verujemo da to niko ne bi ni kupovao, jelte.  Smile I da je bezvredno, u novčanom smislu.  Smile
Što u prevodu znači, par stotina evra u vrh glave.  (al' malo li je na ovu zimoću  Smile )
« Poslednja izmena: 20. Mar 2012, 03:35:47 od WhiteGoa »
IP sačuvana
social share

You sharpen the human appetite to the point where it can split atoms with its desire; you build egos the size of cathedrals; fiber-optically connect the world to every eager impulse; grease even the dullest dreams with these dollar-green, gold-plated fantasies, until every human becomes an aspiring emperor, becomes his own God...
...and where can you go from there? 

OPERATION: Smile
12 MAR 2012 | 16 MAR 2012
Pogledaj profil WWW
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Legenda foruma

Zodijak
Pol Muškarac
Poruke 37017
Zastava Antofagasta
OS
Windows XP
Browser
Chrome 17.0.963.79
evo samo za snesku i njenu mamu

IP sačuvana
social share



Pogledaj profil
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Poznata licnost


create...destroy...enjoy!

Zodijak Cancer
Pol Muškarac
Poruke 2941
Zastava Srbija
OS
Windows 7
Browser
Mozilla Firefox 10.0.2
mob
Nokia ????
Ok, sad za munku znamo da se zove Snezana :duh:  Smile

Evo o nekim fraktalima (koga ne mrzi):

Koch Snowflake



A fractal, also known as the Koch island, which was first described by Helge von Koch in 1904. It is built by starting with an equilateral triangle, removing the inner third of each side, building another equilateral triangle at the location where the side was removed, and then repeating the process indefinitely. The Koch snowflake can be simply encoded as a Lindenmayer system with initial string "F--F--F", string rewriting rule "F" -> "F+F--F+F", and angle 60 degrees. The zeroth through third iterations of the construction are shown above. The fractal can also be constructed using a base curve and motif, illustrated below.



Let N_n be the number of sides, L_n be the length of a single side, l_n be the length of the perimeter, and A_n the snowflake's area after the nth iteration. Further, denote the area of the initial n=0 triangle Delta, and the length of an initial n=0 side 1. Then
N_n   =   3·4^n   
(1)
L_n   =   (1/3)^n   
(2)
l_n   =   N_nL_n   
(3)
   =   3(4/3)^n   
(4)
A_n   =   A_(n-1)+1/4N_nL_n^2Delta   
(5)
   =   A_(n-1)+1/3(4/9)^(n-1)Delta.   
(6)

Solving the recurrence equation with A_0=Delta gives
A_n=1/5[8-3(4/9)^n]Delta,    
(7)

so as n->infty,
A_infty=8/5Delta.    
(Smile

The capacity dimension is then
d_(cap)   =   -lim_(n->infty)(lnN_n)/(lnL_n)   
(9)
   =   log_34   
(10)
   =   (2ln2)/(ln3)   
(11)
   =   1.261859507...   
(12)



Some beautiful tilings, a few examples of which are illustrated above, can be made with iterations toward Koch snowflakes.


In addition, two sizes of Koch snowflakes in area ratio 1:3 tile the plane, as shown above.
http://mathworld.wolfram.com/images/eps-gif/KochFrillFlake3_1000.gif
Another beautiful modification of the Koch snowflake involves inscribing the constituent triangles with filled-in triangles, possibly rotated at some angle. Some sample results are illustrated above for 3 and 4 iterations.

Sierpiński Sieve




The Sierpiński sieve is a fractal described by Sierpiński in 1915 and appearing in Italian art from the 13th century (Wolfram 2002, p. 43). It is also called the Sierpiński gasket or Sierpiński triangle. The curve can be written as a Lindenmayer system with initial string "FXF--FF--FF", string rewriting rules "F" -> "FF", "X" -> "--FXF++FXF++FXF--", and angle 60 degrees.

Let N_n be the number of black triangles after iteration n, L_n the length of a side of a triangle, and A_n the fractional area which is black after the nth iteration. Then
N_n   =   3^n   
(1)
L_n   =   (1/2)^n=2^(-n)   
(2)
A_n   =   L_n^2N_n=(3/4)^n.   
(3)

The capacity dimension is therefore
d_(cap)   =   -lim_(n->infty)(lnN_n)/(lnL_n)   
(4)
   =   log_23   
(5)
   =   (ln3)/(ln2)   
(6)
   =   1.584962500...   
(7)

(Sloane's A020857; Wolfram 1984; Borwein and Bailey 2003, p. 46).

The Sierpiński sieve is produced by the beautiful recurrence equation
a_n=a_(n-1) xor 2a_(n-1),    
(Smile

where xor denote bitwise XOR. It is also given by
a_n=product_(j; e(j,n)=1)2^(2^(e(j,n)))+1,    
(9)

where e(j,n) is the (j+1)st least significant bit defined by
n=sum_(j=0)^te(j,n)2^j    
(10)

and the product is taken over all j such that e(j,n)=1 (Allouche and Shallit 2003, p. 113).


The Sierpinski sieve is given by Pascal's triangle (mod 2), giving the sequence 1; 1, 1; 1, 0, 1; 1, 1, 1, 1; 1, 0, 0, 0, 1; ... (Sloane's A047999; left figure). In other words, coloring all odd numbers black and even numbers white in Pascal's triangle produces a Sierpiński sieve (Guy 1990; Wolfram 2002, p. 870; middle figure). The binomial coefficient (n; k) mod 2 can be computed using bitwise operations AND(NOT(n), k), giving the sequence 0; 0, 0; 0, 1, 0; 0, 0, 0, 0; 0, 1, 2, 3, 0; ... (Sloane's A102037; right figure), then coloring the triangle black if the result is 0 and white otherwise. This is a consequence of the Lucas correspondence theorem for binomial coefficients modulo a prime number.



IP sačuvana
social share
Edit by chelavi1: Potpis uklonjen zbog duzine!
Pogledaj profil WWW
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Poznata licnost


create...destroy...enjoy!

Zodijak Cancer
Pol Muškarac
Poruke 2941
Zastava Srbija
OS
Windows 7
Browser
Mozilla Firefox 10.0.2
mob
Nokia ????
Barnsley's Fern



The attractor of the iterated function system given by the set of "fern functions"
f_1(x,y)   =   [0.85 0.04; -0.04 0.85][x; y]+[0.00; 1.60]   
(1)
f_2(x,y)   =   [-0.15 0.28; 0.26 0.24][x; y]+[0.00; 0.44]   
(2)
f_3(x,y)   =   [0.20 -0.26; 0.23 0.22][x; y]+[0.00; 1.60]   
(3)
f_4(x,y)   =   [0.00 0.00; 0.00 0.16][x; y]   
(4)

(Barnsley 1993, p. 86; Wagon 1991). These affine transformations are contractions. The tip of the fern (which resembles the black spleenwort variety of fern) is the fixed point of f_1, and the tips of the lowest two branches are the images of the main tip under f_2 and f_3 (Wagon 1991).

Box Fractal


The box fractal is a fractal also called the anticross-stitch curve which can be constructed using string rewriting beginning with a cell [1] and iterating the rules



An outline of the box fractal can encoded as a Lindenmayer system with initial string "F-F-F-F", string rewriting rule "F" -> "F-F+F+F-F", and angle 90 degrees (J. Updike, pers. comm., Oct. 26, 2004).
IP sačuvana
social share
Edit by chelavi1: Potpis uklonjen zbog duzine!
Pogledaj profil WWW
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Poznata licnost


Provalila sam šifru :)

Zodijak Aquarius
Pol Žena
Poruke 3302
Zastava Kitee
OS
Windows 7
Browser
Maxthon 3.0
mob
Samsung s5230
super.. ja znam da pravim fraktale u GIMPu  Smile
IP sačuvana
social share


I walk forever...
Pogledaj profil WWW GTalk Skype Twitter Facebook
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Clan u razvoju


Art & Craft http://011art.deviantart.com/prints/

Zodijak Pisces
Pol Muškarac
Poruke 34
Zastava Beograd, Zemoon
OS
Windows XP
Browser
Mozilla Firefox 21.0
mob
Siemens s45
Evo da i ja doprinesem iz svog ugla, posto je teoretski lepo napisano, pozabavicu se slicicama ( www.011art.com )
Vec 11 godina radim fraktale imam skoro 19.000 radova naravno za prodaju i prikazivanje na pomenutom sajtu sam stavio 300 favorita, a uskoro krece i jos jedna strana u zivot sa 100 najnovijih...  Smile (100% fraktali bez PS CSa)

Animacija u malo losijem kvalitetu ali na zahtev Vimeo clanova renderujem HD verziju:

youtube - Fraktal Videeo Animacija - DMT GEM

 

Mali update - Posto se sajt menja (prilagodjava novom konceptu) i u fazi reDizajna je sad cu da osvezim linkove ka novim - starim radovima (jer su ovi zastareli tj. nevide se slike) i dodam najAktivniji profil na DA i ...

Profil :
http://011art.deviantart.com/
Google website : https://sites.google.com/site/fractalart011artfractals/
















IP sačuvana
social share
Pogledaj profil WWW Skype Twitter Facebook
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Moderator
Krajnje beznadezan


Fly Baby, fly...

Zodijak Capricorn
Pol Muškarac
Poruke 11585
Zastava Serbia
OS
Windows XP
Browser
Mozilla Firefox 21.0
Sjajno Smile Smile Smile Smile
IP sačuvana
social share
Pogledaj profil
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Supermoderator
Legenda foruma


Always outnumbered, never outgunned.

Zodijak
Pol
Poruke 47481
Zastava
OS
Windows XP
Browser
Mozilla Firefox 21.0
bas su interesantni pogotovo poslednji
IP sačuvana
social share
Pogledaj profil
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Moderator
Krajnje beznadezan


Fly Baby, fly...

Zodijak Capricorn
Pol Muškarac
Poruke 11585
Zastava Serbia
OS
Windows XP
Browser
Mozilla Firefox 21.0
Upravo tako! Smile Smile
IP sačuvana
social share
Pogledaj profil
 
Prijava na forum:
Ime:
Lozinka:
Zelim biti prijavljen:
Trajanje:
Registruj nalog:
Ime:
Lozinka:
Ponovi Lozinku:
E-mail:
Idi gore
Stranice:
1  Sve
Počni novu temu Nova anketa Odgovor Štampaj Dodaj temu u favorite Pogledajte svoje poruke u temi
Trenutno vreme je: 14. Nov 2024, 18:21:01
nazadnapred
Prebaci se na:  

Poslednji odgovor u temi napisan je pre više od 6 meseci.  

Temu ne bi trebalo "iskopavati" osim u slučaju da imate nešto važno da dodate. Ako ipak želite napisati komentar, kliknite na dugme "Odgovori" u meniju iznad ove poruke. Postoje teme kod kojih su odgovori dobrodošli bez obzira na to koliko je vremena od prošlog prošlo. Npr. teme o određenom piscu, knjizi, muzičaru, glumcu i sl. Nemojte da vas ovaj spisak ograničava, ali nemojte ni pisati na teme koje su završena priča.

web design

Forum Info: Banneri Foruma :: Burek Toolbar :: Burek Prodavnica :: Burek Quiz :: Najcesca pitanja :: Tim Foruma :: Prijava zloupotrebe

Izvori vesti: Blic :: Wikipedia :: Mondo :: Press :: Naša mreža :: Sportska Centrala :: Glas Javnosti :: Kurir :: Mikro :: B92 Sport :: RTS :: Danas

Prijatelji foruma: Triviador :: Nova godina Beograd :: nova godina restorani :: FTW.rs :: MojaPijaca :: Pojacalo :: 011info :: Burgos :: Alfaprevod

Pravne Informacije: Pravilnik Foruma :: Politika privatnosti :: Uslovi koriscenja :: O nama :: Marketing :: Kontakt :: Sitemap

All content on this website is property of "Burek.com" and, as such, they may not be used on other websites without written permission.

Copyright © 2002- "Burek.com", all rights reserved. Performance: 0.104 sec za 16 q. Powered by: SMF. © 2005, Simple Machines LLC.